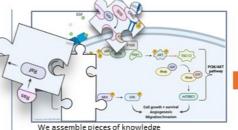
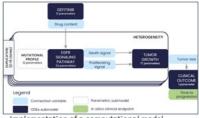
Cancer Treatment:

In silico model of EGFR+ lung adenocarcinoma

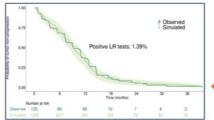
Objectives


- Integrate the effect of EGFR mutations (E19, E20, E21) and treatment on tumor growth using mathematical modeling
- Describe and predict tumor growth variability between patients treated with the same a standard of care: gefitinib
- Run an in silico clinical trial that is predictive on a clinical endpoint: time to progression (TTP)

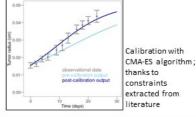
Calibration process


- Step 1: Reproduce growth of in vitro spheroids [1-[3]
- Step 2: Reproduce tumor growth in xenografted mice^[4]
- Step 3: Reproduce the TTP of an EGFR⁺ lung adenocarcinoma population^[5-11]

Main results


- Model validated on dataset^[12] that was not used for calibration
- Median TTP for EGFR-E20 patients treated with gefitinib:
 4.9mo. 25% of patients have a progression during the 1st month; 5% did not progress after 36 months
- Median TTP for patients with common EGFR mutations treated with gefitinib: 10mo. EGFR-E20 patients' TTP is statistically lower

Implement



Implementation of a computational model

Kaplan-Meier curves of probability of tumor non progression (months) for Lux-Lung7 cohort & its corresponding simulated VPOP. LR=log-rank

Model potential

- Can be used as an investigational and control arm for unbiased study of mutational effects
 - Can explore
 - the natural history of patients treated with Gefitinib harboring specific mutated tumors
 complement with an additional treatment, to explore best responders and posology

| 13 | Jagiella et al. (2016) | 17 | Wulet al. (2008) | 18 | Ekert et al. (2014) | 19 | Freyer (1988) | 19 | Sasoncelos et al. (2020) | 19 | Yasuda et al. (2013) | 10 | Sugio et al. (2018) | 10 | Sugio et al. (2018) | 11 | Maemondo et al. (2010) | 12 | Par-Ares et al. (2017) | 13 | Maemondo et al. (2017) | 14 | Par-Ares et al. (2017) | 15 | Par-Ares et al. (2017) | 17 | Par-Ares et al. (2017) | 18 | Par-Ares et al. (2017) | 18 | Par-Ares et al. (2017) | 18 | Par-Ares et al. (2017) | 19 | Par-Ares et al. (2017)

Confidential