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I. About the Avicenna Alliance  

The Avicenna Alliance is an association of industry, academia, and healthcare organizations who have a 

commercial or research interest in the development of in silico medicine. 

The Alliance, established in 2016, has its origins in the Virtual Physiological Human Initiative, a European 

Commission endorsed research area on computer modelling and simulation applied to medicine.  Tasked by 

the European Commission with developing a “Roadmap for in silico medicine”, the Alliance now seeks to put 

this roadmap into policy and ensure the development of a well-functioning framework for the in silico medicine 

ecosystem.  

This Alliance bridges the gap between the scientific community, industry and policymakers by advocating for 

policy changes that take scientific and market developments into account. 

II. Preface  

The objective of this white paper is to inform industry, academic researchers and regulators in competent 

authorities about a pathway for the broader acceptance of in silico (computational) evidence in the regulatory 

decision-making process for medical devices.  As the medical device industry mostly serves a global 

population, harmonization of the guidance for acceptance of in silico evidence by individual regulatory 

authorities around the world is of great importance.  At this point in time, the maturity of the in silico evidence 

presented by industry to the regulatory agencies, as well as the ability of regulators to conduct a timely and 

appropriate review, differs significantly between jurisdictions.  As it is generally accepted that in silico 

evidence accelerates medical device innovation without negatively impacting safety and efficacy, broader 

and more predictable acceptance of in silico evidence is a commonly expressed goal. 

This document describes the benefits of in silico methods, defines essential terms, and outlines a risk-based 

framework for establishing that a model has sufficient credibility for decision-making.  Additional 

considerations on model reporting, simulation lifecycle, and health technology assessment are also 

summarized.  To highlight the need for a globally consistent framework, the paper concludes with a 

comparison of documents published by various global regulatory authorities and standards bodies that focus 

on the predictable and consistent use of in silico evidence in submissions.  The core elements of the paper 

are based on foundational documents developed by industry, regulatory agencies, and academic 

researchers [1-3], whose work has led to a common terminology and harmonized understanding of the 

credible development and utilization of in silico evidence. 

This white paper is structured in a manner similar to the series of three documents published by the 

International Medical Device Regulators Forum (IMDRF) [4-6], which provide global regulators with a risk-

based framework for the evaluation of Software as a Medical Device (SaMD).  This white paper can provide 

essential background information and input for the creation of a similar document. 

It should also be noted that a group of experts and stakeholders (InSilico World, [7]) has initiated a consensus 

process for the development of a Good Simulation Practice (GSP) document to complement existing Good 

Clinical Practice (GCP, (ICH E6(R2) [8]), Good Laboratory Practice (GLP, [9]), and Good Manufacturing 

Practice (GMP, [10]) documents.  In contrast to this paper, the GSP document will provide more detail 

regarding the best practices for implementing and utilizing GSP. 

III. Introduction 

Medical device manufacturers have traditionally relied on bench testing, animal testing and clinical trials (i.e., 

human testing) to establish the safety and effectiveness of medical devices.  This is true both internally when 

making decisions about various aspects of a device design and externally when applying for marketing 

approval.  The industry is increasingly relying on computational modeling and simulation throughout the 

product life cycle to accelerate development and provide additional assurance of performance and safety.  

Their efforts range from models that support early design decisions to models that guide and refine bench 

https://avicenna-alliance.com/files/user_upload/PDF/Avicenna_Roadmap.pdf
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testing to models of devices interacting with human anatomy or physiology.  This latter class of models is an 

individualized virtual test of a medical device or other treatment and is commonly referred to as an in silico 

trial (see the Special Feature for additional details and examples).  One of the primary benefits of an in silico 

trial is that the model predicts the safety or efficacy of an intervention by increasing confidence in the new 

therapy prior to exposing human subjects.  And in contrast to other approaches, in silico trials can also 

provide a physical explanation for the success or failure of a therapy.  This is not only a safety benefit, but 

can shorten development time as well. 

Various regulatory agencies have taken steps to ensure the rigorous application and implementation of in 

silico evidence as part of their decision-making processes [1, 11-13]).  The European Union Regulation (EU) 

2017/745 explicitly mentions “computer modeling” as an allowable form of pre-clinical evidence [14].  In the 

United States, 21 CFR 860.7 lists the accepted forms of scientific evidence without explicitly mentioning 

computational modeling and simulation [15].  Several documents published by the FDA [2, 16-18] list bench 

testing, animal testing, human testing (clinical trials), and computational modeling as four forms of accepted 

science-based regulatory evidence.  However, current regulatory frameworks regarding modeling and 

simulation may not always translate across geographies, address the unique public health risks posed by 

the use of in silico trials, or ensure an appropriate balance between patient/consumer protection and the 

promotion of public health by facilitating innovation.  

Successful utilization of in silico evidence as part of the market authorization process requires primary 

legislation that recognizes the use of in silico evidence or regulations/guidance/standards describing how to 

develop, employ, report, and assess computer simulations.  To address the latter requirement, this document 

aims to provide a common framework for regulators to incorporate a harmonized approach into their 

regulatory processes for evaluating in silico testing and in silico trials.  This document also aims to provide 

regulators with supporting information when relying on in silico evidence during regulatory decision-making. 

 

Special Feature:   Use of in silico evidence in the medical device development lifecycle 

Conventionally, nonclinical investigations, investigations using laboratory animals, or investigations involving 

human subjects represented the accepted forms of evidence for demonstrating the safety and effectiveness of 

a medical device [15].  In the past decade, in silico evidence has been introduced as an additional form of 

evidence, which can be used in lieu of or in conjunction with conventional evidence.  In 2014, the Medical Device 

Innovation Consortium (MDIC) surveyed 35 medical device companies about their use of computational 

modeling and simulation (CM&S) in the product life cycle (Figure 1). The chart shows that CM&S is more often 

used in the early stages of product development or post product launch, but rarely to simulate the interaction of 

the device with a laboratory animal or a patient. Over time, the confidence in modeling results has increased and 

the regulatory pathway has become more established, supporting increased use of in silico evidence as part of 

the regulatory submission process (Figure 2). The objective being to reduce, refine, or replace conventional 

evidence without jeopardizing safety, efficacy, or effectiveness of the device.  

The paper by Morrison et al. provides a comprehensive overview of how computational modeling is being used 

in the research, development, and regulatory approval of medical devices [18].  Additional examples of the 

benefits of in silico evidence are also available in the peer-reviewed literature.  Faris and Shuren showed how 

the duration of a clinical trial or the number of enrolled patients can be reduced by substituting a clinical endpoint 

with a computational model [19].  Haddad et al. outlined a Bayesian statistical approach that combined the results 

from a human clinical trial and an in silico trial to refine the study design and to reduce the number of clinical trial 

participants [20]. The VICTRE trial [21] demonstrated that a full-field digital mammogram of a patient and a 

computational model of the human anatomy are interpreted consistently within the context of the trial (Figure 3).  

The human clinical trial was replaced with an in silico trial, i.e. no human subjects were part of the evidence 

generation in this example.  The Avicenna Alliance also collected member case studies demonstrating the value 

of in silico medicine for both devices and drugs [22]. 
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Figure 1: Computational modeling and simulation is being used to support the development of medical devices throughout 

the total product life cycle. According to a 2014 survey conducted by the Medical Device Innovation Consortium (MDIC), the 

utilization of CM&S differs significantly between the stages. 

                         

Figure 2: The goal is to reduce the overall burden of evidence generation by growing the evidence that is generated with 

computational modeling in a way that is able to reduce the contribution of results from bench experiments, animal 

investigations, and human clinical trials. The pie chart on the right highlights the concept of virtual patients, which are a special 

form of computational models that represent the anatomy or physiology of a human subject in a way that is relevant for the 

interaction with the medical device of interest.  

                                                        

Figure 3: A real full-field digital mammogram of a patient (right) next to a computational model of the human anatomy (left).  

Image from the FDA VICTRE website1. 

 

 

 
1 https://wayback.archive-

it.org/7993/20190424090307/https:/www.fda.gov/MedicalDevices/ScienceandResearch/ResearchProgram
s/ucm477418.htm 
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IV. Definitions 

Medical device 

Any instrument, apparatus, appliance, software, implant, reagent, material or other article intended 

by the manufacturer to be used alone or in combination in humans for one or more of the following 

specified medical purposes: diagnosis, prevention, monitoring, prediction, prognosis, treatment or 

alleviation of a disease or condition, or to effect an anatomical structure or physiology in any other 

form.  Both European Medical Device Regulation [14] and US FDA [23] definitions state that a 

medical device does not achieve its primary intended action through pharmacological, 

immunological, or metabolic means, or chemical action in or on the human body. 

Computational modeling, Computational model, Simulation 

● Computational modeling is the use of computers to simulate and study real-world systems using 

mathematics, physics and computer science [24]. 

● A computational model is a numerical implementation of the mathematical model used to capture 

the relevant behavior of a physical system. 

● A simulation is the result of running a computational model for a specific set of model input 

parameters.  Simulation, therefore, is the process of running a computational model. 

Mechanistic model and phenomenological model 

Computational models that are based on cause-and-effect relationships are called mechanistic 

models [25, 26].  Models that develop a predictor without making any causal assumptions are called 

phenomenological models.  In practice, there is a continuum between mechanistic and 

phenomenological models.  In this context, models utilizing artificial intelligence (AI), machine 

learning (ML), and deep learning are considered phenomenological models. 

In silico  

in silico means carried out in the computer, which is in contrast to in vitro (on the bench), ex vivo 

(outside the body), or in vivo (inside the body). 

In silico methods 

in silico methods comprise mechanistic and phenomenological models.  The three types of in silico 

evaluation methodologies considered here are: 

○ in silico test (or experiment or study) refers to the execution of an in vitro or ex vivo 

experiment in the computational environment [3] (Chapter I, page 11). 

○ in silico medicine refers to the use of individualized computational modeling in all aspects of 

the prevention, diagnosis, prognostic assessment, and treatment of diseases. 

○ in silico trial refers to the use of individualized computer simulations in a cohort of patients 

during the development or regulatory evaluation of a medicinal product, medical device, or 

medical intervention. An in silico trial can be preclinical or clinical studies [27]. 

In silico evidence 

in silico evidence is the result from in silico methods applied in the regulatory approval process and 

encompasses in silico trials and in silico tests. 
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Real-world data (RWD) 

Real-world data are the data relating to patient health status and/or the delivery of health care 

routinely collected from a variety of sources, e.g. electronic health records, claims and billing 

activities, and product and disease registries [28]. 

Real-world evidence (RWE) 

Real-world evidence is the clinical evidence regarding the usage and potential benefits or risks of a 

medical product derived from analysis of RWD [28]. 

Question of Interest 

A question of interest describes the specific question, decision or concern that is being addressed 

(at least in part) based on the results of a computational model [1]. 

Context of Use  

Context of use (COU) defines the specific role and scope of the computational model used to address 

the question of interest [1]. It should include a detailed statement of what will be modeled and how 

the outputs from the computational model will be used to answer or inform the question of interest. 

It is important to note that the COU is distinct from the “indications for use” or “intended use” of a 

medical device, which are descriptions of how a device is intended to be used in clinical practice. 

Viceconti et al (submitted) recently compiled an extensive list of COUs that are classified according 

to their ability to reduce, refine, or replace nonclinical and clinical experimentation [29]. 

Model risk  

Model risk is the possibility that the use of a computational model leads to a decision that results in 

patient harm and/or other undesirable impacts [1]. It reflects the risk the decision-maker incurs when 

using a computational model to support a decision. Model risk is the combination of the influence of 

the computational model (model influence) and the consequence of an adverse outcome resulting 

from an incorrect decision (decision consequence) (Figure 4). 

● Model influence is the contribution of the computational model relative to other contributing 

evidence in making a decision. 

● Decision consequence is the significance of an adverse outcome resulting from an incorrect 

decision. Consequences are typically considered in the context of potential harm to the 

patient. However, non-patient-related impacts may also be considered, such as delayed 

patient access to medical devices, impact on the clinician, financial loss, or increased time 

to market. 

 

 

 

 

Figure 4. Schematic of how model influence and 

decision consequence determine model risk [1].  

Reprinted from ASME V&V 40-2018, by permission of 

The American Society of Mechanical Engineers. All 

rights reserved”. No further copies can be made without 

written permission from ASME. Permission is for this 

edition only. 
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Model credibility  

Model credibility refers to the trust in the predictive capability of a computational model for the COU 

[1]. Trust can be established through the collection of evidence from credibility activities, which 

includes performing verification & validation (V&V) and then demonstrating the applicability of the 

V&V evidence to support the use of the computational model for the COU.  

Verification  

Verification is the process of determining that a computational model accurately represents the 

underlying mathematical model and its solution [30]. Verification is composed of two activities: code 

verification and calculation verification. 

Validation  

Validation is the process of assessing the degree to which the computational model is an accurate 

representation of the reality of interest [30]. Therefore, validation activities are principally concerned 

with demonstrating the correctness of the underlying model assumptions and the degree to which 

sensitivities and uncertainties of the computational model and the associated comparator(s) are 

understood. Validation is generally demonstrated by comparing the computational model predictions 

with the results from the comparator(s), which might be in vitro or in vivo data. Therefore, appropriate 

validation activities require attention to both the computational model and the comparator. 

Please note that the terms verification and validation can have a variety of meanings outside the space of 

computational modeling and simulation, for example: 

- Verification and validation of a product design ensures that the final design meets the internally 

specified and customer requirements, respectively. 

- Verification and validation of embedded software refers to consistency and correctness of the 

software and whether the software meets the user requirements, respectively. 

A theme that appears in all these definitions is that verification refers to whether or not a product accurately 

meets the specified requirements and validation refers to how well the product meets the user’s need.  Put 

another way, verification asks the question “did I build it right?” and validation asks the question “did I build 

the right thing?” 

V. Role of in silico Testing and in silico Trials in Medical Device Development 

Computational models are used throughout the development and 

manufacture of a medical device to enhance understanding of ex vivo or 

in vivo performance.  Computational modeling has the ability to support 

product development as either a stand-alone form of evidence or in 

conjunction with already accepted forms of evidence (bench testing, 

animal testing, and clinical trials).  In this way, computational 

modeling may reduce, refine, or replace the three traditional 

sources of evidence or act as a bridge between these various 

sources (Figure 5).  Models may also be used as part of the 

regulatory decision-making process.  The remainder of this 

document outlines key considerations when developing and 

deploying models throughout the lifecycle of a medical 

device. 

 

Figure 5. Computational modeling has the ability to support 

product development as a stand-alone form of evidence or 

in conjunction with already accepted forms of evidence. 
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VI. The Importance of Risk in Model Development 

Device manufacturers base a variety of decisions on computational models during the design and 

development of new products and manufacturing processes.  There is a broad spectrum of models that may 

be developed, and each is associated with an inherent risk that may carry through to the application of the 

device.  Therefore, the various sources of risk should be considered at the start of any modeling activity and 

then used to establish the model credibility requirements.  This permits organizations to estimate the 

resources required to generate models with sufficient credibility. 

The connection between risk and model credibility has been established by a number of harmonized 

guidance documents and standards [1, 5, 31]  Two common themes in these documents are that models are 

categorized as low, medium or high risk and that risk is the primary consideration when establishing model 

credibility requirements. 

In addition to the risk associated with utilizing the results of a model to support internal decision-making, a 

regulatory risk must be evaluated.  Regulatory risk in this context refers to the risk associated with regulatory 

decisions supported by in silico evidence.  The regulatory risk is currently perceived as higher if the decision 

relies only on in silico evidence as the primary source of evidence to support a safety and efficacy 

assessment, compared to a product assessment supported primarily by traditional nonclinical and clinical 

data. 

VII. Assessing the Credibility of in silico Evidence 

The ASME V&V 40 Standard introduces a risk-informed credibility assessment framework that has been 

developed for computational models supporting medical device development and regulatory review (Figure 

6) [1].  This standard augments the verification, validation, and uncertainty quantification frameworks 

provided by ASME V&V 10 and ASME V&V 20 [30, 32].  The concept of a risk-informed credibility 

assessment is applicable to a broad variety of scientific, technical, and regulatory questions.  This section 

outlines these concepts and provides a high-level overview.  Please refer to the ASME V&V 40 Standard for 

a detailed explanation and examples [1].  

 

Figure 6. Process diagram for the risk-informed credibility assessment framework. Note: after assessing credibility, it 

may be necessary to go back to one of the previous steps (defining COU, assessing the model risk or establishing the 

credibility goals) [1].  Reprinted from ASME V&V 40-2018, by permission of The American Society of Mechanical 

Engineers. All rights reserved”. No further copies can be made without written permission from ASME. Permission is for 

this edition only. 

The process begins with identifying the question of interest, which describes the specific question, decision 

or concern that is being addressed (at least in part) by a computational model.  The next step is to define the 

context of use (COU), which describes the role and scope of the model and how it is going to be used in 

relation to other forms of evidence.  The model risk is then assessed for the specific COU. Model risk takes 

into account the potential consequences of an incorrect model output and the strength of the modeling results 

in the decision-making process.  The two primary factors that impact model risk are the influence of the model 

on the decision and the consequence (on the patient, business, or regulator) when basing a decision (at least 

in part) on a model.  The risk associated with each of these two factors is assessed independently before 

determining the overall model risk.  The model credibility requirements are established based on the risk 

assessment.  This is accomplished by using model risk to determine the required degrees of model 

verification, validation, and applicability such that the model has sufficient credibility for the COU. 
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As an example of how the COU drives risk-informed credibility, a computational model that is used for a 

diagnosis that is also supported by medical imaging and clinical assessment would have lower model risk 

versus a scenario where the diagnosis relies solely on the computational model.  The lack of supporting 

evidence means that the model credibility requirements are greater for this latter case. 

The next step is the collection and preparation of the model inputs such as part geometry, medical imaging, 

material parameters, boundary conditions, and initial conditions.  The quality of the model inputs directly 

influences the quality of the model outputs.  The assessment of the model inputs can be divided into two 

parts.  The quantification of sensitivities is concerned with how variations in input parameters propagate 

through the simulation and affect the output.  The quantification of uncertainties addresses how known or 

assumed uncertainties in the model inputs are propagated to uncertainties in the model results.  In some 

scenarios, the collection of model inputs is the limiting factor in the credibility assessment.  However, the 

same is true for all evidence that is collected by designed experiments or observation.     

Principles of simulation governance, which are discussed in Section IX a, shall be applied to model creation 

and execution.  These principles should be defined in company-specific protocols and be followed for all 

computational models which will become regulatory evidence.  

The evaluation of the modeling results against a comparator is an essential part of the validation exercise.  

Acceptable forms of validation experiments include in vitro, ex vivo or in vivo studies; these studies may be 

performed as part of the validation process or based upon historical data (e.g., nonclinical, clinical trial) or 

real-world evidence (RWE).  The comparator needs to be relevant for the defined COU and needs to cover 

a sufficient sample size as well as the desired range of inputs.  More than one comparator may be required 

to validate a model framework.  

Applicability is the relevance of the validation activities to support the use of the computational model for the 

COU.  Applicability is highest when the measured quantities and the application domain of the comparator 

and the model are identical.  The validity of the model can only be inferred if the quantities of interest and 

the application domain are not identical, therefore requiring a more rigorous verification and validation 

exercise.  

Once the credibility assessment is completed, it needs to be determined if the model is sufficiently credible 

for the COU.  Note that the COU can be modified, and the credibility assessment repeated if the model fails 

the credibility assessment.  Alternatively, the model itself, or the credibility activities, can be revisited and 

improved to reach the required level of model credibility. 

A comprehensive summary of the computational model, model results and conclusions must be documented 

and archived upon conclusion of the modeling project.  Section VIII outlines the structure of a computational 

modeling and simulation report for use with internal decision-makers and external stakeholders.  

VIII. Reporting 

Computational modeling represents a complex development effort that builds upon a wide variety of 

information and data types.  At a certain level of abstraction, a computational modeling activity requires 

identification of a numerical software platform, governing equations and their associated input parameters 

(geometry, material properties, boundary conditions), numerical settings, and post-treatment procedures 

used to summarize the results.  Depending on the context of use, associated model validation activities (in 

vitro or other tests) may also be required to establish sufficient trust in the predictive capability of a model.  

This last point is especially important since regulators may shoulder some level of risk when relying on the 

outputs of a computational model as part of a regulatory decision regarding device safety and efficacy.  

Therefore, it is necessary to provide a summary report that contains all relevant information regarding the 

details of model generation, execution, and results extraction, as well as evidence supporting model 

credibility. 

This section reviews the structure of a modeling and simulation report that addresses the aforementioned 

concerns. The report outline generally follows the FDA guidance on “Reporting of Computational Modeling 
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Studies in Medical Device Submissions” [2], which describes the format and contents of reports summarizing 

the in silico testing included as valid scientific evidence in regulatory submissions.  The specific elements of 

the report are as follows: 

- Overview: a summary of the computational modeling activity, including the question of interest that 

is being addressed by the model, a description of the context of use, and the solver type(s) being 

used to address the question; 

- Risk Analysis: a description of the risk associated with relying on the results of a computational model 

to justify the safety or effectiveness of one or more elements of a medical device; 

- Code Verification: a description of software quality assurance (SQA) activities of the numerical 

simulation platform and evidence demonstrating that the code is free of bugs in the source code and 

numerical algorithms; 

- System Configuration: a description of the computational domain being investigated, typically the 

geometry of the device and surrounding physiological milieu; 

- Model Form: a summary of the mathematical relationships representing the governing equations, 

material properties, and boundary conditions; 

- Model Inputs: numerical values and associated uncertainties for the geometry, system properties, 

initial and boundary conditions, externally-imposed conditions, and their provenance; 

- Calculation Verification: information regarding the computational grid (discretization), including a 

summary of the grid refinement studies that were performed to ensure a mesh independent solution 

in space and/or time; 

- Numerical Implementation: a summary of the numerical simulation platform as well as any solver 

settings utilized to generate the solution; 

- Validation: activities that were performed to establish the credibility of the computational model for 

the context of use; 

- Results: a summary of the quantities of interest and how they were extracted from the model and 

then compared to the validation data; 

- Limitations: identification of any assumptions that impose limitations on the predictive capability of 

the model framework; 

- Conclusions: describe the final conclusions that were made based on the model. 

A report that addresses these elements facilitates consistency and predictability in the regulatory review of 

in silico evidence because a complete and thorough description of the modeling activity has been provided.   

IX. The Lifycycle of Computational Models 

a. Simulation Governance 

Simulation governance is the management of organizational modeling and simulation capabilities as a 

corporate competence [33].  It is concerned with all aspects of modeling and simulation development, ranging 

from the selection and adoption of the best available simulation technology to the formulation of mathematical 

models to the management of experimental data and to the revision of mathematical models in light of new 

information, i.e. continuous improvement.  Simulation governance relies on ensuring the repeatability and 

robustness of an organization’s modeling and simulation capabilities to provide assurance of the reliability of 

information generated by computational models.  Each organization should develop a simulation governance 

plan that ensures the goals of their computational modeling activities are met. 



  

12 

b. Data Integrity 

Data integrity is of utmost importance as it pertains to critical safety and efficacy endpoints analysis in 

classical clinical trials. It should therefore be of paramount concern when considering in silico testing or trials. 

In silico methods can be applied to a variety of points in the total product life cycle of a medical device (Figure 

7), ranging from early ideation to invention and prototyping to animal or human trials, during regulatory 

review, and post-market.  A high proportion of the data generated during in silico testing may not impact the 

final design, especially data generated during the design and ideation phases when researchers are scoping 

out a new design.  However, in silico evidence included in regulatory submissions must meet stringent data 

integrity requirements [34-37].  

 
Figure 7: The Total Product Life Cycle of a Medical Device [16]. 

Data integrity is critical to regulatory compliance and it is industry’s responsibility to ensure the safety, 

efficacy, and quality of their products.  Additionally, regulators rely on the availability of reliable and accurate 

data to protect the public health (refer to 21 CFR Part 210, 211 and 212, [38, 39]), and regulations in other 

geographies).  In silico methods generate significant amounts of electronic data, placing additional 

importance on data integrity. 

Data integrity refers to the completeness, consistency, and accuracy of data throughout the data life cycle, 

which includes data creation, modification, maintenance, processing, archival, retrieval, transmission, and 

disposition [39]. The medical device industry follows the ALCOA+ framework to ensure data integrity, where 

the “ALCOA” acronym stands for data needing to be Attributable, Legible, Contemporaneously recorded, 

Original, and Accurate; and the “+” refers to 4 additional data attributes: Complete, Consistent, Enduring, 

and Available.  Data should also be securely stored and backed up and regularly checked for accessibility, 

readability, and accuracy [40]. Data integrity therefore requires close collaboration between the user of the 

computerized system and IT and QA departments.  Flexible and risk-based strategies can be employed to 

detect and prevent data integrity issues.  Efforts should be made to ensure a continuously auditable trail 

throughout the simulation lifecycle. 

c. Health Technology Assessment 

A health technology assessment (HTA) relies on scientific and clinical evidence to determine the various 

parameters used as part of device approval, such as clinical effectiveness, expected quality of life for 

patients, cost-effectiveness, etc.  An HTA is usually based on systematic literature review of direct and 

indirect evidence [41-44].  When evaluating high-risk medical devices, CM&S can strengthen the scientific 

evidence.  Indeed, the use of CM&S is of heightened interest when direct experimentation is not possible 

because of ethical concerns, lack of time or even costs.  As the European Commission updated the medical 

device regulations, scientific evidence used to assess high-risk medical devices is required to ensure the 

evidence quality based on methodologically robust trials, possibly in combination with other evidence 

sources, such as CM&S [43].  HTA organizations favored incorporating computational models into HTA.  

However, they vary in the areas for which they provide guidance and recommendations.  A guidance 
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prepared for the Agency of Healthcare Research and Quality has therefore been published to provide a 

framework to utilize modeling and simulation in the context of HTA [41]. 

X. Comparison of CM&S Standards/Guidelines 

Since 2013, several organizations, ranging from standards bodies and competent authorities (e.g., US FDA) 

to international regulatory consortia (e.g., IMDRF), have issued relevant documents supporting the use of 

computational models as regulatory evidence, software as a medical device (SaMD), and artificial 

intelligence applied to medical devices.  With the goal of global harmonization of the acceptance of in silico 

evidence, Table 1 provides a non-comprehensive listing of the issuing body, applicable jurisdiction, and main 

objective of the document, among other criteria (the titles are active hyperlinks in the digital version of the 

document). 

XI. Conclusion  

The rising costs of generating the required safety and effectiveness evidence for global regulatory authorities 

is stifling innovation in the medical device industry.  It is recognized that computational modelling and 

simulation can significantly accelerate the introduction of new devices at a lower cost without compromising 

patient safety.  But the lack of harmonized guidance for the acceptance of in silico evidence is limiting the 

utilization of this additional source of evidence.  Additionally, the maturity of the in silico evidence presented 

by industry to regulatory agencies varies widely.  This white paper outlined a framework establishing the 

credible use of in silico evidence in regulatory submissions.  The framework could be adopted in full or 

adapted to the unique requirements of each competent authority.  The Avicenna Alliance is available to 

review the proposed framework in more detail and can also provide support when developing regional 

approaches. 

 

HARMONIZED GUIDANCE FOR THE ACCEPTANCE OF IN SILICO EVIDENCE BY GLOBAL 

REGULATORY AUTHORITIES IS CRITICAL TO ENSURING RAPID ACCESS TO SAFE AND EFFECTIVE 

MEDICAL DEVICES FOR ALL PATIENTS. 
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Table 1: Comparison of various CM&S reference documents 
 

document ASME V&V40 
FDA Model 
Reporting 
Guidance 

IMDRF - SaMD 
3 docs 

FDA AI Action 
Plan 

US AHRQ 
[41, 42] 

PMDA Model 
Informed Drug 
Development 

MFDS AI 
guideline 

primary 
application 

devices devices devices devices devices and drugs drugs devices 

issuing body 
(type of body) 

int’l standards 
organization 

regulatory 
authority 

regulatory 
consortium 

regulatory 
authority 

regulatory 
authority 

regulatory 
representative 

regulatory 
authority 

developer industry, regulators regulators 
regulators, 
industry, 
academia 

regulator 
regulators, 

industry 

regulators, 
industry, 
academia 

regulators, 
industry 

issue date 2018 2016 2013, 2015, 2017 2021 2016, 2017 2014 2020 

applicable 
jurisdiction 

global US selected regions US US Japan South Korea 

main objectives 

establish 
framework for 

determining model 
credibility 

requirements 

drive consistency 
and predictability 
in model reporting 

and regulatory 
review 

address public 
health risks 

associated with 
SaMD 

communicate 
action plan to 

establish 
regulatory 

framework for 
AI/ML & SaMD 

advance the 
credibility, 

transparency, and 
methodological 

rigor of modeling 

foster model-
informed drug 
development 

(e.g., PK, PK/PD) 

improve 
transparency of 

review and 
approval for big 

data and AI-based 
medical devices 

intended scope mechanistic mechanistic 
mechanistic and 

phenomenological 
phenomenological not specified phenomenological phenomenological 

intended 
audience 

all CM&S stakeholders (industry, competent authorities, academia) 

 
 

https://www.asme.org/codes-standards/find-codes-standards/v-v-40-assessing-credibility-computational-modeling-verification-validation-application-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-computational-modeling-studies-medical-device-submissions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-computational-modeling-studies-medical-device-submissions
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-computational-modeling-studies-medical-device-submissions
http://www.imdrf.org/workitems/wi-samd.asp
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device
https://effectivehealthcare.ahrq.gov/sites/default/files/pdf/modeling-review_research-2017.pdf
https://www.pmda.go.jp/files/000209060.pdf
https://www.pmda.go.jp/files/000209060.pdf
https://www.pmda.go.jp/files/000209060.pdf
https://www.mfds.go.kr/eng/brd/m_40/view.do?seq=72623
https://www.mfds.go.kr/eng/brd/m_40/view.do?seq=72623
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This Position Paper is endorsed by the 25 Members of the Avicenna Alliance on Friday 28 May 2021: 
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